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ABSTRACT

Spatial analysis using Geographic Information Sys-
tems (GISs) is evaluated for its ability to predict the po-
tential hazard of a flood event in the Illinois River region
in the state of Illinois. The data employed in the analy-
sis are available to the public from trusted organizations
such as the Illinois State Geological Survey and the U.S.
Geological Survey. Since available GIS data may be lim-
ited for flood risk modeling in some parts of the world,
the purposes of this study are to examine the use of spa-
tial analysis in a GIS to determine flood inundation risk
and to produce an accurate flood inundation vulnerabil-
ity map employing the least amount of data. This study
concentrates on areas that have stream gauge data with
definable flood stage(s) and utilizes the inverse distance
weighted interpolation method on different digital ele-
vation models (DEMs) with different spatial resolutions
(1 m, 10 m, and 30 m) to determine the extent of flood-
ing over the study area. Resulting maps created for the
Illinois River region yielded about 80 percent agreement
with the effects of an actual flood event on the Illinois
River near Peoria, IL, on April 23, 2013. A four-gauge
distribution scenario using a 10-m DEM produced the
most accurate results, but all scenarios generated rea-
sonable flood simulation. Thus, we speculate that it is
possible to create a flood prediction map with a reason-
able amount of accuracy using only two initial input data
layers: stream gauges and a DEM.

'Emails: arabie@kau.edu.sa; jckoste@ilstu.edu; rjrowley@ilstu.edu
2Present address: Indiana University, Department of Earth and
Atmospheric Sciences, 1001 East 10th Street, Bloomington, IN
47405-1405.

3 Corresponding author email: ewpeter@ilstu.edu.

INTRODUCTION

Rainfall and runoft gauges are not readily available
for every river system, which affects the availability
and credibility of hydrological data. Vigorous urban-
ization of areas coupled with temporal and spatial vari-
ation in hydrological characteristics makes the quanti-
tative assessment of runoff characteristics in most areas
unattainable (El-Hames and Richards, 1998). Disas-
ters due to natural hazards are subject to many types
of uncertainty, which complicates how these disas-
ters are predicted and represented on maps and geo-
visualizations (Kostelnick et al., 2013). For example,
natural variability of streamflow and uncertainty of
even “best available” elevation data create ambiguity
in defining the floodplain boundary for flood hazard
maps.

The term “flood risk” indicates the perceived or ac-
tual exposure to loss from a river flooding event dur-
ing a natural disaster. The level of risk depends on
the natural disaster’s overall impact on human lives
and/or the economy (Safaripour et al., 2012). In or-
der to identify that risk, however, accurate maps show-
ing potential inundation (hazard) are required. Sim-
ple maps depicting floodwater distribution allowing
real-time and rapid simulations, which can be consid-
ered “an effective real-time flood modeling and pre-
diction system” (Al-Sabhan et al., 2003), could give
decision makers an understanding of the threatened
areas.

For thorough flood modeling to be successful, many
models require detailed information, including dis-
charge, precipitation, ambient soil water content, land
use, evaporation intensity, watershed infiltration, and
the geology and geomorphology of the area. Each of
the factors affects the others significantly, and their
complex relationship affects the stream runoff. To
create an accurate hydrological model, a good grasp
of the interaction between such factors is manda-
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tory (Kia et al., 2012). However, the limitations of
available and reliable data constrain flood modeling
in many locations and physical environments around
the world. This article postulates that a limited, but
critical, set of data may be used in a Geographic
Information System (GIS) to generate flood hazard
maps with a reasonable level of accuracy. Additionally,
we evaluate the use of such data in creating poten-
tial inundation scenarios at various scales, or spatial
resolutions.

Flood modeling with GIS first requires the selec-
tion of suitable input data, including a Digital Eleva-
tion Model (DEM) to represent surface topography.
DEMs are subject to several potential sources of error
and uncertainty, including methods for how elevation
values are generated and interpolation methods used
to derive a DEM from these elevation values (Fisher
and Tate, 2006). Many DEM sources exist today for
flood modeling, including those created through Light
Detection and Ranging (LiDAR) (typically 1- to 3-m
resolution) and those created through other methods
(typically 10-30-m resolution or coarser). Resolution
will have an effect on point-specific and topographic at-
tributes (Deng et al., 2008). A comparison among the
different resolutions of DEMs is necessary to enrich
the understanding of any value added given the high
expense in acquiring and processing LiDAR data sets
(Galzki et al., 2008), especially in parts of the world
where LiDAR data are not readily available for flood
modeling.

Studies in various environmental applications have
found mixed results regarding comparisons of GIS
analyses with DEMs at varying spatial resolutions and
derived through different elevation sources. For exam-
ple, Jacoby et al. (2013) concluded that 10-m DEMs
were noticeably beneficial for delineating geomorphic
features such as cave levels when compared to 30-m
DEMs. However, in the context of coastal inundation
predictions for sea level rise, Kostelnick et al. (2013)
found comparable results in predicted inundation for
analyses in coastal Maine for both 10-m and 30-m
DEMs from the National Elevation Dataset, which
they attributed to similar source elevation data sources
for both DEMs (see Gesch [2007]). In another sea
level rise inundation study, Gesch (2009) compared four
DEMs of varying accuracy and resolution and found
significant improvement of predicted inundations de-
rived from DEMs generated from LiDAR compared
to those that were not. In contrast, Schroeder et al.
(2015) reported no differences in stream profiles gen-
erated from 1-m and 3-m DEMs created from the
same LiDAR data. An added, and sometimes over-
looked, advantage of LIDAR DEMs in the context of
hydrologic modeling is their ability to account for fea-
tures such as levees and drainage canals that may im-

pact predicted inundation extents (Poulter and Halpin,
2008).

The present study provides a demonstration of the
viability of creating a flood hazard map using stream
gauge spacing and DEMs as the two significant com-
ponents in determining vulnerability and inundation
using a GIS platform. Our primary purpose is to eval-
uate the minimum amount of data required to produce
an accurate GIS model by comparing the accuracy
of flood-model results generated from different com-
binations of stream gauges and DEM resolutions. In
other words, we generate several predictive flood mod-
els with different DEM and stream gauge input data
sources and then systematically reduce and modify in-
put data until the minimum data required to gener-
ate an acceptable accuracy level is reached. Validity of
the individual models is tested by comparing the pre-
dicted flooded areas to actual flooded areas through
an accuracy assessment. In short, the approach taken
in this study illustrates the development of a method-
ology for a rapid, easy-to-use, and cost-effective means
for implementing flood hazard models. The developed
models are practical and can be applied to a wide va-
riety of scenarios for which flood hazards data may be
limited.

MATERIALS AND METHODS
Study Area

The study incorporated a portion of the Illinois
River, a major tributary of the Mississippi River (Lian
etal., 2010), in the State of Illinois (Figure 1). The area
was chosen because of the availability of all the needed
data, specifically DEMs at different spatial resolutions,
a network of stream gauges with predefined flood levels
(Table 1), and satellite data for a flood event that inun-
dated the area in spring 2013. The examined segment
of the Illinois River has a length approaching 220 km
and drainage of roughly 36,350 km?. Geographically,
the study area along the Illinois River extends from
Cass and Schuyler Counties in the south to La Salle
County in the north. At the southern end of the re-
gion, floodplain deposits (alluvium) dominate the bot-
tomlands, with a width ranging from about 5 to 6 km.
This belt covers the southern banks of the Illinois River
(Worthen, 1868). The southernmost parts are prairies
that have thin wood belts skirting the channel. To the
north, broken, hilly bluffs run parallel to the river. Hu-
mans have heavily modified the Illinois River water-
shed to support agriculture and urban growth (Akanbi
and Singh, 1997). The investigated segment resides in
the lower Illinois River, where the floodplain is used
for agriculture. To preserve a suitable water depth for
ship navigation, seven locks and dams were built on
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Figure 1. Map of the Illinois River study area showing the stream gauges used in the different distribution scenarios. Map by Anas Rabie.

the Illinois River. Levees and drainage constructions

are present that influence the degree of flooding

(Lian

et al., 2010), which may also have an impact on flood-

plain modeling.

GIS Data Use

GIS data were collected from different online and
no-cost data sources that provided hydrographical,

Table 1. U.S. Army Corps of Engineers (USACE) and National Weather Service (NWS) stream gauges positioned along the Illinois River and

incorporated in this study.

Station Name Code River Mile" Latitude (°N) Longitude (°W) Flood Stage (m.a.s.l.)
Illinois River—LaSalle Isli2 224.7 41.323611 89.110833 137.2
Illinois River—Henry hnyi2 196 41.107222 89.356111 136.8
Illinois River—Peoria piai2 164.6 40.702222 89.564444 136.1
Illinois River—Peoria Lock and Dam prai2 157.9 40.633333 89.625000 136.2
Illinois River—Havana havi2 119.6 40.292778 90.068611 133.6
Illinois River—Beardstown beai2 88.6 40.020278 90.436667 132.5
m.a.s.l. = meters above sea level.
*Miles above the mouth of the Illinois River.
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Figure 2. The three DEMs at different spatial resolutions (1 m, 10 m, and 30 m) used in the analysis. The square area highlights the location

of the inset DEMs and is presented in Figure 8.

topographical, and related data for the study area.
DEMs for the study area were acquired from the U.S.
Geological Survey (USGS) National Map Viewer with
different resolutions—30 m, 10 m, and 1 m—or with
the native resolution of 1 arc second, 1/3 arc sec-
ond, and 1/9 arc second, respectively. Hydrography
data, including polygon water bodies and flow paths as
lines, were obtained from the National Hydrography

Dataset. Prior to spatially analyzing the data layers,
the coordinate systems of the different layers were con-
verted to Universal Transverse Mercator to minimize
areal distortion from the map projection for all area cal-
culations. Furthermore, a seamless DEM was created
for each of the three different resolutions (Figure 2).
Stream gauges maintained by the U.S. Army Corps
of Engineers (USACE) and monitored by the National
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Weather Service (NWS) (http://www.weather.gov)
provide continuous stage data, along with metadata
including longitude and latitude coordinates and flood
stage levels for the Illinois River system (Table 1 and
Figure 1). Six stream gauges along the Illinois River
were incorporated into the study: at La Salle in La
Salle County, at Henry in Marshall County, two stream
gauges east and southeast of Peoria in Peoria County,
at Havana in Mason County, and at Beardstown in
Cass County (Table 1).

For the accuracy assessment, Landsat 8 Operational
Land Imager (OLI) data were acquired from the USGS
Global Visualization Viewer (GLOVIS). Between April
18 and May 16, 2013, the Illinois River experienced a
significant flood event (Figure 3). Peak flooding oc-
curred on April 23, but as a result of the 16-day satel-
lite revisit periods, available Landsat imagery tiles were
from April 29 for the central and northeastern portions
of the study area and from April 20 for the southwest-
ern portion of the study area (Figure 3). Landsat 8 was
selected because it provided the only no-cost optical
imagery available for the time period of the flood.

Neither of the Landsat 8 image dates is optimal: The
April 29 images for the central and northeastern por-
tions of the study area occurred 6 days following the
peak event, whereas the April 20 images were occurred
3 days before the flood peak for the southwestern por-
tion (Figure 4). Furthermore, the April 20 images had
over 33 percent cloud coverage, which increased er-
ror in the image classification. The accuracy assess-

Landsat8 OLI

Figure 3. Landsat 8 OLI images as they appear on GLOVIS (Febru-
ary 2014). The study area is shaded in blue.

ment model simulated conditions for April 29 using the
stage levels provided by NWS for each stream gauge to
coincide with the Landsat images of April 29, 2013.
This provided uniformity but, of course, restricted our
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Figure 4. Hydrograph of gauge Peoria (PIAI2). Highlighted dates correspond to the available Landsat imagery. The peak stage drops from
139.14 meters above sea level (m.a.s.l.) on April 23 to 138.99 m.a.s.l. on April 29.
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accuracy assessment to only that portion of the study
area covered by the April 29 images (see Figure 3). The
Landsat 8 OLI imagery, with a spatial resolution of 30
by 30 m (USGS, 2014), was merged into a single im-
age to generate a map of the “actual” flood extent for
ground-truthing purposes. The data were classified us-
ing a supervised classification approach (where the user
creates “training sites” to specify the desired land cover
classes) to delineate the locations that were inundated
from those that were not inundated. Then, the water
associated with the Illinois River, which in this case is
defined by the actual water pixels on the day of interest,
was isolated from the Landsat reclassified imagery.

The study uses five different stream gauge distribu-
tions (Table 2). For each of the five gauge distributions,
flood prediction interpolations were generated for the
three different DEM resolutions (30 m, 10 m, and 1
m), resulting in a total of 15 different scenarios. The
distribution of the stream gauges in each scenario was
selected for optimal geographic spacing. For instance,
the two—stream gauge distribution used gauges “hnyi2”
and “havi2.” This decision was made to avoid using the
two stream gauges on the edges or the two in the middle
that minimize additional errors that may have resulted
because of the interpolation process.

Stream-stage data, site name, longitude, and latitude
for each gauge station were organized into a table, and
five different data sets were created to accommodate the
different stream gauge distribution scenarios (Table 2).
The data sets were imported into ESRI’s ArcGIS and
plotted as point locations. The working environment in
the GIS model was set so that the results would have
the same extent of the Illinois River portion used in
this study and to have the same cell size of the desired
DEM resolution (30 x 30m; 10 x 10m; 1 x 1 m).

Inundation simulations were conducted for the en-
tire study area; however, the accuracy assessment was
conducted only on the portion covered by the April 29,
2013, Landsat images.

Simulation Procedure

Figure 5 presents a flow chart of procedures used in
this study. A series of raster-based GIS analyses were

e
DE:VI To Stream
LIDAR UTM Gauges
—
)
DW Landsat
Image
Raster .
Calculator Reclassify
Reclassify Actual Flood
Flood Risk
Analysis

Under
Estimate

Not
Flooded

Over
Estimate

Flooded

Figure 5. Flow chart of the methodology used to develop the flood
hazard model.

used to predict areas affected by a flood informed by
stream gauge data. Potential inundation surfaces were
interpolated for each DEM resolution from the stream
stage data using an inverse distance weighted (IDW)
technique. The IDW interpolation determines raster
cell values using a linearly weighted combination of a
set of sample points. IDW interpolation is based upon
an assumption that the modeled variable loses influ-
ence with distance from data locations (Watson and
Philip, 1985). IDW was used to predict water levels at
a particular flood stage between gauge locations along
the river.

Table 2. Breakdown of stream gauges used for the different distribution scenarios.

La Salle Henry Peoria Peoria Lock and Dam Havana Beardstown
Scenario Isli2 hnyi2 piai2 prai2 havi2 beai2
6-Gauge X X X X X X
5-Gauge X X X X X
4-Gauge X X X X
3-Gauge X X X
2-Gauge X X
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Table 3. Flood hazard simulation results.

Landsat Imagery

Simulation Prediction

Condition Score Condition Score Calculated Score Result
Not flooded 0 Not flooded 0 0 Agreement
Not flooded 0 Flooded 1 1 Overestimation
Flooded 10 Not flooded 0 10 Underestimation
Flooded 10 Flooded 1 11 Agreement

The Map Algebra Raster Calculator tool in ArcGIS
was used to predict inundation at the different DEM
resolutions with the different stream gauge distribu-
tions. This was done using an expression that subtracts
the IDW results from the desired DEM, providing a
flood prediction based on the stream gauge informa-
tion where any positive value is “Flooded” and any
negative value is “Not Flooded.” To make the raster
calculator results easier to compare visually, the results
were reclassified using the Spatial Analyst Reclassify
tool.

Generating Comparable Results

An accuracy assessment of the projected inundation
from the DEM was performed by comparing results
to the actual flood extents, as extracted from Landsat
images using ERDAS IMAGINE Supervised Image
Classification, based on over 40 training sites on each
image. Areas defined as water were designated the nu-
merical score of “10” and those with no water were
assigned the score of “0” (Table 3). The results of the
simulation prediction were also reclassified into two
groups. “Not Flooded” areas were assigned the score
of “0” and “Flooded” areas a score of “1.”

The two layers were evaluated to determine the
agreement in areas designated “Flooded” and “Not
Flooded” from the different DEM resolutions by us-
ing an expression that simply added the pixel scores
of the two reclassifications. The new calculated values
indicate either agreement between the simulation and
the Landsat image classification (a pixel value of either
11 or 0 reflecting a match between predicted and actual
flooding or not, respectively) or a disagreement (val-
ues of either 1 or 10 reflecting a mismatch between
predicted and actual flooding or not, respectively)
(Table 3).

RESULTS

Fifteen flood scenarios were generated, allowing for
the comparison of actual flooded areas to those pre-
dicted to be inundated on April 29, 2013, for three
DEM resolutions and five stream gauge spacings. For

each scenario, we computed areas and percentages as-
sociated with agreement (flooded and not flooded, in
both actual and predicted) and disagreements (overes-
timation and underestimation) (Table 4). Each of the
15 scenarios exhibited flood inundation agreement over
70 percent of the area simulated.

While the two—stream gauge scenarios produce the
lowest overestimation error, at nearly 9 percent for all
DEM resolution, the scenarios consistently produced
the highest total error (between 29.5 and 29.7 percent,
depending on resolution) because of much larger un-
derestimation errors compared to those associated with
other stream gauge scenarios (all DEM resolutions
around 21 percent) (Figure 6). Scenarios with three,
four, five, and six gauges all reported largely similar
total error percentages between 22 and 23 percent, de-
pending on DEM resolution, each with relatively con-
sistent over- and underestimation errors (Table 4 and
Figure 7). Locations farther from the employed gauges
had higher error than did areas near the used gauges,
a function of the imperfections in the spatial interpo-
lation process. For every scenario, the area of disagree-
ment for underestimation of potential flood was greater
than the area for overestimation (Table 4 and Figure
7b and c).

DISCUSSION
Underestimation or Overestimation

In planning flood mitigation and resiliency measures,
itis, of course, crucial to have accurate models available.
When such accuracy may not be possible as a result
of lack of data or data precision, then an overestima-
tion of hazard may be preferable to an underestimate.
It is true that overestimations may prompt planners
to believe that some mitigation measures will be cost-
effective when they may be unnecessary, but in general
the costs of under-preparedness are much higher than
being over-prepared, especially when dealing with the
consequences of avoidable events (Rosner et al., 2014).
The stream gauge scenarios with more than two gauges
generated the highest overestimation and the low-
est underestimation consistently among the different

Environmental & Engineering Geoscience, Vol. XXIII, No. 4, November 2017, pp. 345-357 351



Rabie, Peterson, Kostelnick, and Rowley

Table 4. Flood hazard simulation disagreements (in km?) and error percentages, with best models highlighted in bold. Total area of the study

location is 610.62 km?.

Overestimate Underestimate
Number of Gauges” km? % km? % Total Disagreement (km?) Total Error (%)

DEM resolution, 30 m

2 53.42 8.75 127.92 20.95 181.36 29.70

3 58.83 9.63 78.97 12.93 137.80 22.57

4 58.84 9.64 76.75 12.57 135.60 22.21

5 58.28 9.54 80.80 13.23 139.08 22.78

6 58.24 9.53 82.33 13.48 140.57 23.02
DEM resolution, 10 m

2 53.21 8.72 126.63 20.74 179.84 29.45

3 58.61 9.59 76.19 12.47 134.81 22.08

4 58.64 9.60 74.08 12.13 132.71 21.73

5 58.07 9.51 78.02 12.77 136.09 22.29

6 58.06 9.50 79.44 13.01 137.51 22.52
DEM resolution, 1 m

2 53.32 8.73 126.65 20.74 179.98 29.47

3 58.73 9.61 76.24 12.49 134.99 22.11

4 58.75 9.62 74.13 12.14 132.89 21.76

5 58.20 9.53 78.04 12.78 136.24 22.31

6 58.19 9.53 79.46 13.01 137.66 22.54

DEM = Digital Elevation Model.
*See Table 2 for distribution of gauges.

DEM comparisons, with the four-gauge scenario yield-
ing slightly lower error (Figure 7b). We hypothesize
that such a result may be connected to the locations
and/or the distances between those stream gauges in
the combination of stream gauges used in that scenario.
One possibility for the four—stream gauge density sce-
nario yielding lower error is that the IDW interpolation
method used in the study area’s settings has a threshold
that was reached with four gauges, and the results do
not necessarily improve with more gauges.

Visual comparison of the extent of the predicted
floods (Figure 6) and the error data (Table 4) suggests
that no apparent difference exists between the differ-
ent stream gauge distributions or with use of differ-
ent DEM resolutions. Underestimation is seen across
the edges of the river, whereas overestimation is clus-
tered in the southwest end as well as the northeast end
of the Illinois River, which may represent edge effect
error.

Although error estimations across the DEM resolu-
tions were relatively consistent, a closer examination
of the role of DEM resolution reveals a larger differ-
ence between the 30-m DEM and 10-m DEM reso-
lutions than between the 10-m and 1-m DEM resolu-
tions (Figures 7b and 7c). The results are similar to
those reported by Jacoby et al. (2013) in that the 10-
m DEM generated lower error and was more accurate
than were 30-m DEMs for modeling cave entrances.
While the use of the 10-m DEM consistently generated

models with marginally lower error than those derived
from the 1-m DEM, the individual differences among
the various gauge distribution scenarios were too small
to have significance in terms of the results. A simple
quantitative comparison between the results of 10-m
DEM models and 1-m DEM models shows that the
average difference in this point-to-point comparison is
an area of 0.16 km?, or only 0.03 percent. Generally,
higher resolution data provide better sampling and im-
prove the elevation delineations (Hammer et al., 1995;
Zhang et al., 1999). However, the differences between
1-m DEMs and more coarse DEMs has not always
led to improved accuracy in the models here. For ex-
ample, Schroeder et al. (2015) found that streambed
elevations generated from 1-m and 3-m DEMs were
alike.

For this work, the difference between 10-m and 1-m
DEM-generated models is found in a release note pro-
vided by the USGS regarding the National Elevation
Dataset (NED). The NED metadata states that the
study area extent is within the Missouri and Missis-
sippi River Basin flood project for the USACE for the
Upper Midwest and Plains States, which lasted from
1997 to 2001, using 1/9 arc second (3-m) NED. Later
on, the 3-m LiDAR DEMs were used to create the
10-m and 1-m DEM resolutions (Gesch et al., 2002).
The re-sampling explains why the results between the
two DEM resolutions were comparable to each other:
they are derived from the same elevation source. Hence,
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Figure 6. Flood hazard simulation map for the 10-m DEM and selected stream gauge scenarios, where (a) shows the results at La Salle, (b)
shows the results at Henry, and (c) shows the results at Peoria Lock and Dam. Refer to Figure 1 for stream gauge locations. Maps by Anas

Rabie.

these results suggest that the source elevation data may
be more important than merely the spatial resolution of
the DEM. Alternatively, two different versions of stan-
dard 30-m DEM modules are available in the United
States: “Level 1” and “Level 2.” The 30-m DEM used
in this study is a “Level 1” 30-m DEM, which was
derived from 7.5 U.S. Topo maps, also created by the
USGS. “Level 2”7 30-m DEMs are derived from 1/3
arc second DEMs, which are usually 10-m DEMs. This
different elevation source explains, at least in part, why
the 30-m DEM used in this study yielded results dif-

ferent from the other DEM resolutions. However, the
difference between the 10-m DEM and the 1-m DEM
simulations is not significant (Table 3). Our results do
not prioritize the choice of DEM resolution to employ
when generating inundation maps in areas with similar
characteristics to the study locale. Despite the fact that
the 30-m DEM data are not as accurate as the LIDAR-
derived 10-m and 1-m DEM data, the differences in
predicted flood areas among the resolutions is small.
Considering the cost of acquiring LiDAR data and the
longer processing times required for the larger file sizes
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Figure 7. (a) Total disagreement, in percent, for the various stream gauge scenarios for all 15 gauge scenarios. (b) Overestimation and (c)
underestimation in the simulated flood hazard errors for the 30-m DEM (black circle), 10-m DEM (dark gray square), and 1-m DEM (light

gray triangle).

(5 minutes for 30-m, 12.5 minutes for 10-m, and 38.5
minutes for 1-m DEMs in this study), the results from
this study suggest that the 10-m DEM resolution is the
preferred resolution for the generation of the inunda-
tion maps. The 10-m DEM models produced less error
than did the 30-m DEM in one-third the processing
time of the 1-m DEM. Given that the model output
and error analyses show the 1-m and the 10-m results
are very similar, the spatial resolution is not a signifi-
cant control if the source elevation data (LiDAR) are
the same for both DEMs, as is the case in the study
in hand, or for an area with similar characteristics to
those of the study area. Thus, this work supports the
conclusion by Galzki et al. (2008) that lower resolution
DEMs are preferred over the 1-m DEM as a result of
the computational requirements and lack of availability
of data in some areas.

Focus on Disagreement

It is important to realize that the model in this study
simulated the flood based solely on elevation and does
not examine the role of human influences on water flow
dynamics. Human modification of the land surface re-
sulted in major areas of disagreement between observed
conditions and modeled conditions in this study (Fig-
ure 8). To better show such differences, two elevation
profiles were created. Profile A-A’ (Figure 9) is for the
agricultural fields within the flood plain, whereas Pro-
file B-B’ (Figure 10) is for a reservoir. Along Profile
A-A’, the green areas that represent overestimations
are actually agricultural fields protected by levees. This
area would be overestimated even at base flow because
the stage of the river would be higher than the land
elevation. Similarly, along Profile B-B/, the elevation
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Figure 8. Map showing an example of the total disagreement as-
sociated with human modification of nature. Lines A-A’ and B-B’
show the location of the elevation profiles used for the agricultural
fields and the reservoir, respectively. Map by Anas Rabie.

of the reservoir perimeter is designed to contain water
at an elevation higher than the stage of the river. The
models simulated that flood water will not inundate the
reservoir, but the reservoir area always appears to be
flooded. For both of these locations, the errors are re-
lated to human influences, which modify, mask, or alter
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Figure 9. Line A-A’ elevation profile with the extent of river and
agricultural fields.
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Figure 10. Line B-B’ elevation profile with the extent of river and
the reservoir.

the natural conditions. Detailed modeling and vetting
can overcome these errors but is beyond the scope of
this work. It is, however, important to recognize that
hazard mitigation studies on floodplains must take into
account such human modification of the landscape that
may not be discernable in topography-based simulation
of inundation.
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Figure 11. Underestimation map for the four-stream gauge scenario,
10-m DEM resolution. To provide spatial detail of the results, the
fourth gauge (beal2) is not shown (off map). Refer to Figure 1 for
stream gauge locations. Map by Anas Rabie.
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To validate the methods used in this study, Landsat
imagery was acquired, but could not be used to repre-
sent the actual water distribution on the day of the flood
peak in the City of Peoria (April 23, 2013) since that
day coincided with heavy rain and severe weather con-
ditions, with clouds covering the extent of the imagery,
making it unusable for ground condition assessment.
Thus, a later date, April 29, was chosen to represent the
peak inundation even though the stage was about 0.8
m below the peak flood (Figure 4). This could explain
some of the underestimation in the simulation. In other
words, areas predicted as “not flooded” that were ac-
tually flooded may be a result of residual flooding on
April 29 associated with the peak conditions on April
23. Another possible explanation for the high underes-
timation is because the land still appears wet following
the peak conditions, thus being classified as water in
the binary classification of the imagery. An overview of
the underestimated areas for the four-gauge scenario
developed with the 10-m DEM is shown in Figure 11.
Furthermore, the mismatch in resolution between the
Landsat imagery (at 30 m) and the 10-m and 1-m
DEMs, given the unfortunate absence of other feasi-
ble satellite data sets, could have also influenced the
error estimates in the accuracy assessment.

CONCLUSIONS

The study found that it is possible to create flood pre-
diction maps with a reasonable level of accuracy using
few data inputs. The largest total error percentage is less
than 30 percent, and if the two—stream gauge case sce-
nario was excluded, the largest total error percentage
was only 23 percent. It is noteworthy that even though
the errors may seem large, the study error percentages
represent the least amount of data possible to create a
flood hazard analysis map, based on DEMs and stream
gauge water levels. Using this simple approach with
projected peak stages will allow for accurate predic-
tion of areas to be flooded, which can be considered a
good first solution with which to start planning flood
emergency management situations. The simplicity of
this model makes it a useful asset in urban planning
and future flood predictions, addressing the concerns
presented by Al-Sabhan et al. (2003). For instance, if
an area is expecting a flood of a certain intensity, all
emergency planners need to do is to use a DEM and
available data from stream gauges to simulate flood
conditions.

Given access to minimal data, DEMs, and stream
gauge data, the methods we present allow for quick,
simple, and accurate vulnerability predictions. Further-
more, this simplified model is easier to implement by
a wide range of staff and personnel, especially those
who are not flood engineers. While the scenarios us-

ing the 30-m DEM resolutions or two-gauge scenar-
ios were not optimal, they still produced results sim-
ilar to the LiDAR-derived 10-m and 1-m resolution
DEMs.

Using highly detailed data does not necessarily lead
to better simulations or always produce better results;
this was clearly shown by the accuracy assessment. Fur-
thermore, the scenarios using the 1-m DEM also had
a slightly larger total disagreement than did the 10-m
DEM, which was unexpected. The computational dif-
ference between 30-m DEM use and 10-m DEM use
is consistent with other hydrologic work (Jacoby et al.,
2013). Schroeder et al. (2015) drew similar conclusions
when developing stream profiles using 1-m and 10-m
DEMs.

This study showed that higher stream gauge density
(using more stream gauges) does not necessarily pro-
duce better results, as this statement was largely unsup-
ported by our analysis. In fact, the four-stream gauge
scenario has the highest overestimate and the lowest un-
derestimate across all three DEM resolutions, as well as
the least total error percentage. Regardless of the DEM
resolution used, the four-stream gauge distribution has
the best results based on total error (underestimation or
overestimation). One or a combination of factors may
have led to these results. The four-gauge scenario may
have been an optimal distance between and/or spatial
distribution of the gauges. Another possibility is that
in the process of going from five- or six-gauge scenar-
ios, a gauge with higher error may have been removed
from the simulations. A future study may try different
distributions and combinations than those used in the
current study. This would further determine if accu-
racy is correlated to the location and distance between
individual stream gauges.

ACKNOWLEDGMENTS

The authors acknowledge and thank two review-
ers for their suggestions, which have improved the
manuscript. The authors wish to thank King Abdu-
laziz University for the financial assistance afforded
Anas Rabie while pursuing his M.S. degree.

REFERENCES

AKANBI, A. A. AND SINGH, K. P., 1997, Managed Flood Storage
Option for Selected Levees along the Lower Illinois River for
Enhancing Flood Protection, Agriculture, Wetlands, and Recre-
ation: Second Report, Validation of the UNET Model for the
Lower Illinois River: llinois State Water Survey, Contract Re-
port 608, 110 p.

AL-SABHAN, W.; MULLIGAN, M.; AND BLACKBURN, G. A., 2003,
A real-time hydrological model for flood prediction using GIS
and the WWW: Computers, Environment Urban Systems, Vol.
27, No. 1, pp. 9-32, d0i:10.1016/S0198-9715(01)00010-2.

356 Environmental & Engineering Geoscience, Vol. XXIII, No. 4, November 2017, pp. 345-357



GIS Predictions of Flood Inundation

DENG, Y.; WILSON, J. P.; AND GALLANT, J. C., 2008, Terrain anal-
ysis. In Wilson, J. P. and Fotheringham, A. S. (Editors), The
Handbook of Geographic Information Science: Blackwell, Ox-
ford, U.K., pp. 417-435.

EL-HAMES, A. S. AND RICHARDS, K. S., 1998, An integrated, phys-
ically based model for arid region flash flood prediction capa-
ble of simulating dynamic transmission loss: Hydrological Pro-
cesses, Vol. 12, No. 8, pp. 1219-1232, d0i:10.1002/(SICI)1099-
1085(19980630)12:8<1219::AID-HYP613>3.0.CO;2-Q.

FisHER, P. F. AND TATE, N. J., 2006, Causes and consequences of
error in digital elevation models: Progress Physical Geography,
Vol. 30, No. 4, pp. 467489, d0i:10.1191/0309133306pp492ra.

GALZKI, J.; MULLA, D.; JOEL, N.; AND WING, S., 2008, Targeting
Best Management Practices (BMPs) to Critical Portions of
the Landscape: Using Selected Terrain Analysis Attributes to
Identify High-Contributing Areas Relative to Nonpoint Source
Pollution: Minnesota Department of Agriculture.

GescH, D. B., 2007, The national elevation dataset. In Maune, D.
(Editor), Digital Elevation Model Technologies and Applica-
tions: The DEM Users Manual, 2nd ed.: American Society for
Photogrammetry and Remote Sensing, Bethesda, MD, pp. 99—
118.

GEscH, D. B., 2009, Analysis of Lidar elevation data for improved
identification and delineation of lands vulnerable to sea-level
rise: Journal Coastal Research, Special Issue 53. pp. 49-58,
doi:10.2112/5i53-006.1.

GESCH, D. B.; OIMOEN, M.; GREENLEE, S.; NELSON, C.; STEUCK,
M.; AND TYLER, D., 2002, The national elevation dataset: Pho-
togrammetric Engineering Remote Sensing, Vol. 68, No. 1, pp.
5-32.

HAMMER, R. D.; YOUNG, F. J.; WOLLENHAUPT, N. C.; BARNEY, T.
L.; AND HAITHCOATE, W., 1995, Slope class maps from soil sur-
vey and digital elevation models: Soil Science Society America
Journal, Vol. 59, No. 2, pp. 509-519.

JACOBY, B.; PETERSON, E. W.; KOSTELNICK, J. C.; AND DOGWILER,
T.,2013, Approaching cave level identification with GIS: A case
study of Carter Caves: ISRN Geology, Vol. 2013, No. 160397,
p. 7, doi:10.1155/2013/160397.

KiA, M.; PIRASTEH, S.; PRADHAN, B.; MAHMUD, A.; SULAIMAN,
W.; AND MORADI, A., 2012, An artificial neural network model
for flood simulation using GIS: Johor River Basin, Malaysia:
Environmental Earth Sciences, Vol. 67, No. 1, pp. 251-264,
doi:10.1007/512665-011-1504-z.

KOSTELNICK, J. C.; MCDERMOTT, D.; ROWLEY, R. J.; AND BUN-
NYFIELD, N., 2013, A cartographic framework for visu-
alizing risk: Cartographica, Vol. 48, No. 3, pp. 200-224,
doi:10.3138/carto.48.3.1531.

LiaN, Y; CHAN, L; XiE, H.; AND DEMISSIE, M., 2010, Improv-
ing HSPF modeling accuracy from FTABLES: Case study
for the Illinois River Basin: Journal Hydrologic Engineering,
Vol. 15, No. 8, pp. 642-650, doi:10.1061/(ASCE)HE.1943-
5584.0000222.

PouLter, B. AND HarLpiN, P. N., 2008, Raster modelling of
coastal flooding from sea-level rise: International Journal Geo-
graphical Information Science, Vol. 22, No. 2, pp. 167-182,
doi:10.1080/13658810701371858.

ROSNER, A.; VOGEL, R. M.; AND KIRSHEN, P. H., 2014, A risk-based
approach to flood management decisions in a nonstationary
world: Water Resources Research, Vol. 50, No. 3, pp. 1928-
1942, doi:10.1002/2013WR014561.

SAFARIPOUR, M.; MONAVARI, M.; ZARE, M.; ABEDI, Z.; AND
GHARAGOZLOU, A., 2012, Flood risk assessment using GIS
(case study: Golestan province, Iran): Polish Journal Environ-
mental Studies, Vol. 21, No. 6, pp. 1817-1824.

SCHROEDER, K.; PETERSON, E. W.; AND DOGWILER, T., 2015, Field
validation of DEM and GIS derived longitudinal stream pro-
files: Journal Earth Science Research, Vol. 3, No. 3, pp. 43-54,
doi:10.18005/JESR0303002.

WartsoN, D. F. AND PHILIP, G., 1985, A refinement of inverse dis-
tance weighted interpolation: Geo-processing, Vol. 2, No. 4, pp.
315-327.

WORTHEN, A. H., 1868, Geology of Illinois: Legislature of Illinois.

ZHANG, X.; DRAKE, N. A.; WAINWRIGHT, J.; AND MULLIGAN,
M., 1999, Comparison of slope estimates from low resolution
DEMS: Scaling issues and a fractal method for their solution:
Earth Surface Processes Landforms, Vol. 24, pp. 763-779.

Environmental & Engineering Geoscience, Vol. XXIII, No. 4, November 2017, pp. 345-357 357






